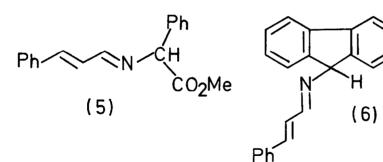
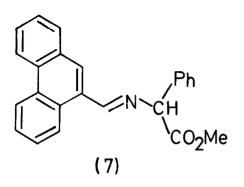

X=Y-ZH SYSTEMS AS POTENTIAL 1,3-DIPOLES. 1,5-ELECTROCYCLISATIONS OF IMINES by R. Grigg^{*} and H.Q.N. Gunaratne

(Department of Chemistry, Queen's University, Belfast BT9 5AG, Northern Ireland)


<u>Summary</u>. The naphthylidene imine of methyl (1-cyclopentenyl)glycine undergoes competitive double bond isomerisation and 1,5-electrocyclisation via a dipolar tautomer.


There has been much recent interest in 1,5-electrocyclisation processes¹⁻³ of dipolar systems and the cyclisation of even more extended dipolar systems has been reported.⁴ Our recent discovery of the facile thermal tautomeric equilibration of X=Y-ZH systems with their 1,3-dipolar tautomers $(1 \rightleftharpoons 2)^5$ prompted us to explore the possibility of generating 1,5-dipolar species in this way.

There are two types of vinylogous X=Y-ZH systems (3) and (4) capable of generating 1,5-dipolar species. Examples of both types of system have been prepared based on imines. However, the imines (5-7) analogous to (3) have unfavourable stereochemistry for cyclisation. Attempts to effect cyclisation of (5-7) by heating at 110° in toluene were unsuccessful. However, formation of the 1,5-dipole was demonstrated by trapping (toluene, 110° , 1h) with N-phenylmaleimide, e.g. (5) \rightarrow (8; 79%) as a single stereoisomer.

1201

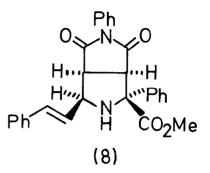
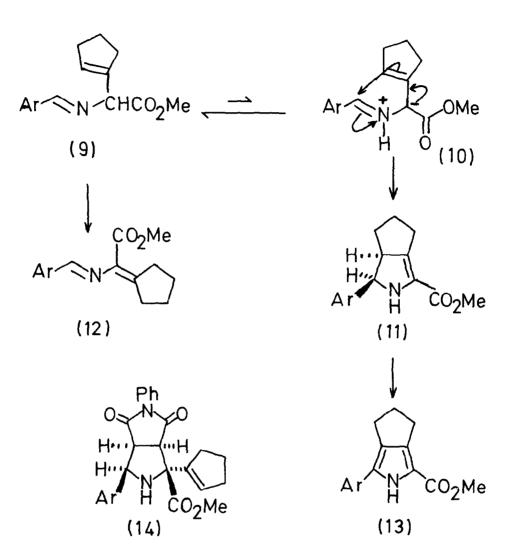



Table. Effect of solvent on competing 1,5-electrocyclisation and double bond migration of (9) at 80⁰.

		Product Ratio	
Solvent	$t_{\frac{1}{2}}(h)$	(11) :	(12)
CH ₃ CN	109	5.5	1
Xylene [*]	-	1.93	1
Toluene	43	1.2	1
Pyridine	5.7	1	24
DMF	3.7	1	32
Toluene/CH ₃ CO ₂ H	0.63	0	100
Toluene/DABCO	0.48	0	100

≠ Substrate concentration 0.137M

* Substrate concentration 0.4M, temperature 110⁰

Ar = 2-naphthyl

The imine (9) analogous to (4) was prepared from the corresponding β , γ unsaturated α -amino acid⁶ and naphthaldehyde. Stereospecific 1,5-electrocyclisation to (11) occurred on heating a solution of (9) in various solvents (Table). Concurrent double bond isomerisation (9 \rightarrow 12) was observed and the ratio of (11): (12) was solvent dependent, with acetonitrile providing the best yield of (11). The addition of an equivalent of weak acid or base diverted the reaction to (12) (Table). The 1,5-electrocyclised product (11) was further characterised by oxidation (dry benzene, room temperature, 12h) to the pyrrole (13; 91%) with DDQ. Formation of the 1,5-dipolar species (10) was demonstrated by trapping with N-phenylmaleimide (toluene, 110° C, 1h) to give (14; 88%).

We thank SERC and Queen's University for support.

References

- E.C. Taylor and I.J. Turchi, <u>Chem. Revs.</u>, 1979, <u>79</u>, 181;
 R. Huisgen, <u>Angew. Chem. Int. Ed. Engl.</u>, 1980, <u>19</u>, 947.
- W.N. Speckamp, S.J. Veenstra, J. Dijkink and R. Fortgens, <u>J. Amer. Chem. Soc</u>., 1981, <u>103</u>, 4643; S.J. Veenstra and W.N. Speckamp, <u>ibid</u>, 1981, <u>103</u>, 4645; idem, <u>J. Chem. Soc</u>. <u>Chem. Comm.</u>, 1982, 369.
- G.W. Visser, W. Verboom, P.H. Benders and D.N. Reinhoudt, J. Chem. Soc., Chem.Comm., 1982, 669.
- W. Eberbach, E. Hadicke and U. Trostmann, <u>Tetrahedron</u> <u>Letters</u>, 1981, <u>22</u>, 4953.
- R. Grigg and J. Kemp, <u>Tetrahedron Letters</u>, 1978, 2823;
 R. Grigg, J. Kemp and N. Thompson, <u>ibid</u>, 1978, 2827;
 R. Grigg, M. Jordan and J.F. Malone, <u>ibid</u>, 1979, 3877;
 R. Grigg, L.D. Basanagoudar, D.A. Kennedy, J.F. ^Malone and S. Thianpatanagul, <u>ibid</u>, 1982, <u>23</u>, 2803; R. Grigg,
 J. Kemp, G. Sheldrick and J. Trotter, <u>J.Chem.Soc.,Chem.Comm.</u>, 1978, 109; R. Grigg and H.Q.N. Gunaratne, <u>ibid</u>, 1982, 384.
- K.- I. Nunami, M. Suzuki and N. Yoneda, <u>J. Chem. Soc</u>., <u>Perkin Trans 1</u>, 1979, 2224.

(Received in UK 13 December 1982)